Spectral filtering for resource discovery

نویسندگان

  • Soumen Chakrabarti
  • Byron E. Dom
  • David Gibson
  • Ravi Kumar
  • Prabhakar Raghavan
  • Sridhar Rajagopalan
  • Andrew Tomkins
چکیده

We develop a technique we call spectral filtering, for discovering high-quality topical resources in hyperlinked corpora. Through relevance and quality judgements collected from 37 users, we show that, over 26 topics, spectral filtering usually finds web pages that are rated better than those returned by the hand-compiled Yahoo! resource list, and by the Altavista search engine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted-HR: An Improved Hierarchical Grid Resource Discovery

Grid computing environments include heterogeneous resources shared by a large number of computers to handle the data and process intensive applications. In these environments, the required resources must be accessible for Grid applications on demand, which makes the resource discovery as a critical service. In recent years, various techniques are proposed to index and discover the Grid resource...

متن کامل

An Improved Light-weight Matchmaking Mechanism for Discovering Owl-s Services Based on Sparql, Bipartite and Nlp Approach

Semantic Web services integrate the meaningful content of the Semantic Web with the business logic of Web services and thus enable industries and individuals to access these services. But as the number of available Web services increase, there is a growing demand for a mechanism for effective retrieval of required services. We propose an improved Semantic Web service discovery method for findin...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Nonparametric Spectral-Spatial Anomaly Detection

Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998